Metformin-suppressed differentiation of human visceral preadipocytes: Involvement of microRNAs
نویسندگان
چکیده
Visceral adipose tissue contributes to the pathophysiology of metabolic syndrome. Metformin has been reported to suppress lipogenesis in a murine preadipocyte cell line. However, the effect of metformin on the differentiation of human visceral adipose tissue remains unknown. MicroRNAs (miRNAs or miRs) have been suggested as therapeutic targets because of their involvement in the differentiation and maturation of fatty cells. The aim of this study was to determine whether metformin suppresses the differentiation of human preadipocytes and to identify miRNAs associated with the regulation of lipid metabolism. Human visceral preadipocytes (HPrAD-vis) were preincubated in growth media and then cultured with differentiation media containing metformin for 1 or 2 weeks. Adipogenic differentiation of the cells was assessed by Oil Red O staining, and soluble adiponectin in the culture media was measured using an enzyme-linked immunosorbent assay. Cell proliferation was assessed using a WST-8 assay, and the gene and protein expression of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT‑enhancer-binding protein α (C/EBPα) was determined by RT-qPCR and western blot analysis, respectively. miRNAs were profiled using human miRNA Oligo chips after total RNA was extracted and labeled. Oil Red O staining showed that metformin suppressed the accumulation of lipid droplets in HPrAD-vis cells. The adiponectin concentration in the culture media was also decreased in metformin-treated cells. The WST-8 assay revealed no effect on proliferation or growth inhibition following metformin treatment, although metformin suppressed the expression of PPARγ and C/EBPα. miRNA profiling further revealed differences between the metformin-treated group and control HPrAD-vis cells. Thus, the findings of the present study demonstrated that metformin suppressed the differentiation of human preadipocytes in vitro and altered the miRNA profile of these cells. Thus, the miRNAs whose expression levels were altered by metformin may contribute to the observed suppression of HPrAD-vis cell differentiation.
منابع مشابه
OCT1 Expression in Adipocytes Could Contribute to Increased Metformin Action in Obese Subjects
OBJECTIVE Metformin has been well characterized in vitro as a substrate of liver-expressed organic cation transporters (OCTs). We investigated the gene expression and protein levels of OCT-1 and OCT-2 in adipose tissue and during adipogenesis and evaluated their possible role in metformin action on adipocytes. RESEARCH DESIGN AND METHODS OCT1 and OCT2 gene expressions were analyzed in 118 adi...
متن کاملCombined metformin and insulin treatment reverses metabolically impaired omental adipogenesis and accumulation of 4-hydroxynonenal in obese diabetic patients
OBJECTIVE Obesity-associated impaired fat accumulation in the visceral adipose tissue can lead to ectopic fat deposition and increased risk of insulin resistance and type 2 diabetes mellitus (T2DM). This study investigated whether impaired adipogenesis of omental (OM) adipose tissues and elevated 4-hydroxynonenal (4-HNE) accumulation contribute to this process, and if combined metformin and ins...
متن کاملHistone deacetylase 9 is a negative regulator of adipogenic differentiation.
Differentiation of preadipocytes into mature adipocytes capable of efficiently storing lipids is an important regulatory mechanism in obesity. Here, we examined the involvement of histone deacetylases (HDACs) and histone acetyltransferases (HATs) in the regulation of adipogenesis. We find that among the various members of the HDAC and HAT families, only HDAC9 exhibited dramatic down-regulation ...
متن کاملMiR-146b is a regulator of human visceral preadipocyte proliferation and differentiation and its expression is altered in human obesity
Visceral obesity is an independent risk factor for metabolic syndrome, and abnormal fat accumulation is linked to increases in the number and size of adipocytes. MiR-146b was a miRNA highly expressed in mature adipocytes while very lowly expressed in human mesenchymal stem cells (hMSCs) and human visceral preadipocytes (vHPA). In this paper, we mainly focused on the roles of miR-146b in adipoge...
متن کاملTargeting AMP-activated protein kinase in adipocytes to modulate obesity-related adipokine production associated with insulin resistance and breast cancer cell proliferation
BACKGROUND Adipokines, e.g. TNFα, IL-6 and leptin increase insulin resistance, and consequent hyperinsulinaemia influences breast cancer progression. Beside its mitogenic effects, insulin may influence adipokine production from adipocyte stromal cells and paracrine enhancement of breast cancer cell growth. In contrast, adiponectin, another adipokine is protective against breast cancer cell prol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 38 شماره
صفحات -
تاریخ انتشار 2016